ng Objectlves

Software Testmg has different goaIs and ob)ectnves The major ob]ectlves of sy

Soﬂ:ware testing are as follows:
» Finding defects which may get created by the programmer while
developing the software.
» Gaining confidence in and providing information about the level
of quality.
» To prevent defects.
« To make sure that the end result meets the business and user
requirements.
« To ensure that it satisfies the BRS that is Business Requirement
Specification and SRS that is System Requirement Specifications.
« To gain the confidence of the customers by providing them a quality
- product.
Software testing helps in finalizing the software application or product
against business and user requirements. It is very important to have good
test coverage in order to test the software application completely and make

: it sure that it's performing well and as per the specifications.

. While determlmng the test coverage the test cases should be deS\gned well
e :*?w;th ‘maximum possibilities of finding the errors or bugs. The test

,1.*6

§1
£ u

1 &cases should be very effective. This objective can be measured by,_ixghe J

Scanned by CamScanner

‘ %1_ | Jng all;}:@

' b
t the testmg is
g ma ces sure tha o coverage means that the testlng

us areas like functionahty of the
n wuth the OS hard_ware and

to test the performance of

7’5-@ e system is ready for use.
,n done to cover the variot

cation, compatibility of the apphcatio

erent types es of Bﬂrowsers, performance testmg
testing to make sure that the syst

ould not be any blocking issues. It also
ployed easily to the machine and

em is rehable and
'the application and load

: :'-should not crash or there sh

determines that the appllcatnon can be de
without any resistance. Hence the application is easy to install, learn and

Cd

use.

Principles of Testing

There are seven principles of testing. They are as follows:

1. Testing shows presence of defects: Testing can show the defects are
present, but cannot prove that there are no defects. Even after testing the
application or product thoroughly we cannot say that the product is 100%
defect free. Testing always reduces the number of undiscovered defects
remaining in the software but even if no defects are found, it is not a proof
of correctness.

2. Exhaustive testing is impossible: Testing everything including all;

- combinations of inputs and preconditions is not possnble. So, mstead of ;

domg the exhaustwe testlng we can use nsks and pnorltles to foc' s

it

1 sl S

Scanned by CamScanner

) ~ev‘l bugs. To overcome this “Pesticide Paradox”, it is really very
portant to review the test cases regularly and new and different tests

tentlally find more defects.
- 6. Testing is context dependent: Testing is basically context dependent.
- Different kinds of sites are tested differently For example, safety - critical
\—'_-‘ sy = o et
‘software is tested dlfferently from an e- commerce site.
7. Absence - of - errors fallacy: If the system built is unusable and does

not fulfill the user’s needs and expectations then finding and fixing defects
- does not help

T

Testab;llty

! "are t“ ' tabllnty ‘s the degree to which a software art

|fact (i.e. a software
ware module requnrements- or de5|gn document) suppo

Scned bCamScanner

which resu

| extrinsic prope T .
st goals, tes

ested and the te _
test context) Even though

frware size) it should be
ause it is highly
coupling,

ght'.of as an e

the software to be t
the

\not be measured dlrectly (such as so
f a software artifact bec

trinsic property 0 i
; other key software qualities such as encapsulation,

“Th correlatlon of 'testability’ to good design can be observed by seeing that '
~ code that has weak cohesion, tight coupling, redundancy and lack of
~ encapsulation is difficult to test. |

A lower degree of testability results in increased test effort. In extreme
cases a lack of testability may hinder testing parts of the software

; or software requirements at all.
In order to link the testability with the difficulty to find potential faults in a

system (if they exist) by testing it, a relevant measure to assess the
testability is how many test cases are needed in each case to form a
complete test suite (i.e. a test suite such that, after applying all test cases to

the system, collected outputs will let us unambiguously determine whether

the system is correct or not according to some specification). If this size is
small, then the testability is high. Based on this measure, a testability
~ hierarchy has been proposed.

(1)Testability hierarchy

- Ba i
i+ sed on the amount of test cases required to construct a complete test
'S
U|'te|h each context (i.e. a test suite such that, if it is applled to the

Scanned by CamScanner

xists a 'ﬁ’nite complete test suite.
I_: any partial distinguishing rate (i.e. an
correct systems from incorrect systems) can

y incomplete cép, ity
be reached wrth :

ﬁmte test suite.
ass III: there eX|sts a countable complete test SUIte

- Class IV: there exists a complete test suite.

. ClassV aH cases.
It has been proved that each class is strictly included int

_lnstance, testing when we assume that the behavnor of the lmple

o the next. For
mentatlon e

"~ under test can be denoted by a deterministic finite-state machine for some
known finite sets of inputs and outputs and with some known number of
states belongs to Class I (and all subsequent classes). However, if the
number of states is not known, then it only belongs to all classes from Class
II on. If the implementation under test must be a deterministic finite-state

machine failing the specification for a single trace (and its continuations),
and its number of states is unknown, then it only belongs to classes from
Class III on. Testing temporal machines where transitions are triggered if
inputs are produced within some real-bounded interval only belongs to
classes from Class IV on, whereas testing many non-deterministic systems
only belongs to Class V (but not all, and some even belong to Class I). The
inclusion into Class I does not require the simplicity of the assumed
computation model, as some testing cases involving implementations written
in any programming language, and testing implementations defined as
machines depend'ing' on continuous magnitudes, have been proved to be in
Class I. Other elaborated cases, such as the testing framework by Matthew

Hennessyunder must semantics, and temporal machines with rational

2 ‘?}J

timeouts belong to Class I1.

et

Al

o

Scanned by CamScanner

|

st response time' can;n_o‘ti'

:ble in practice (a teSt'is feasible not only in theor—y_ b

at is Test case? : e

st Case is a document, which‘hés a set of test data, precondntn::;;
-expected results and postconditions, developed for a particular test scen
in order to verify compliance against a specific requirement.

Test Case acts as the starting point for the test execution, and after
applying a set of input values; the application has a definitive outcome r:?nd
leaves the system at some end point or also known as execution
postcondition.

Typical Test Case Parameters;

* Test Case ID

* Test Scenario

» Test Case Description
~ Test Steps

* Prerequisite

» Test Data

¢ EXpected Resylt

¢ Test Parameters

Actual Result

’ erify that the

- input field that can
| accept maximum
of 10 characters

| Verify that the
input field that can
accept maximum
of 11 characters

e e e———————y T

i the same after fix.

Following are t

e

Login to
application and

' key in 10

characters

Login to
application and
key in 11
characters

1

If the expected result d
defect. The defect goes through t

1. Deriving test cases directly from a require
: test desngn techmque The Techniques include:

" : ;
. Application
' should be able to | accepts all 10

GhE SR
Application

- accept all 10 \ characters.
characters. \ “
b e e |
- Application \Apphcat\on
' should NOT accepts all 10
" accept all 11 | characters.
characters. ‘\

{

e

oesn't match with the actual result, then we log a
he defect life cycle and the testers address

~ Testcase Design Technique

he typical design techniques in software engineering:

ment specification or black box

Scanned by CamScanner

e on similar systems or

g8 3.-D, rivmg test cases based on testers experlenc

. Error Guessing

. Exploratory Testing

.Types of Testing
Manual Testing

Manual testing includes testing a software manually, i.e., without using any
automated tool or any script. In this type, the tester takes over the role of
an end-user and tests the software to identify any unexpected behavior or
bug. There are different stages for manual testing such as unit testing,
integration testing, system testing, and user acceptance testing.

Testers use test plans, test cases, or test scenarios to test a software to
ensure the completeness of testing. Manual testing also includes
exploratory testing, as testers explore the software to identify eriors in it.

- Automation Testing

~ Automation testmg, which is also known as Test Automation, is when the &2
_tester wrntes scripts and uses another software to test the product... ThlS ‘

Scanned by CamScanner

:M" 5 IrAE 3
art from regression testing, automation testing Is also used to test the

applicat:on from load, performance, and stress point of view. It increases
- the test coverage, improves accuracy, and saves time and money
comparison to manual testing.

What is Automate?

It is not possible to automate everything in a software. The areas at which
a user can make transactions such as the login form or registration forms,
any area where large number of users can access the software

simultaneously should be automated.

Furthermore, all GUI items, connections with databases, field validations,
etc. can be efficiently tested by automating the manual process.

When to Automate?

Test Automation should be used by considering the following aspects of a
software:

e Large and critical projects

e - Projects that require testing the same areas frequently

Requirements not changing frequently

~» Accessing the application for load and performance with many virtual users
&) ,:ilfStablé,.'_‘_sbftware with respect to manual testing

 Availability of time

in

Scanned by CamScanner

s

mation scripts. Before m
t used to auto

ok
/ithil %5-§B&Ware for automation
tion of appropriate tool for test automation

g test Scripts
elopment of test syits
e‘cUt‘iop})f scripts

Create resut reports ; .

~* Identify any Potential bug or performance issues
Software Testing Tools

The following tools can be used for automation testing:

* HP Quick Test Professional
» Selenium

» IBM Rational Functional Tester
* SilkTest
~+ TestComplete
* Testing Anywhere
» WinRunner
» LoadRunner

* Visual Studio Test Professional
WATIR

Af-.~vTes‘tfi‘r()g Method

il

here are different methods that can be used for software testing. This e
i:hapt““’brieﬂy describes the methods available.

{f

3 aie tg? X 5k Pl —'} B ¥ ﬁ
K\r,it . #&<
o Scanned by CamScanner

Black Box Testing is a software testing method in which testers evaluate the
functionality of the software under test without looking at the mternal codef IS

structure. This can be apphéd to every level of software testing such as Unlt
Integration, System and Acceptance Testing.

Testers create test scenarios/cases based on software requirements and
specifications. Tester performs testing only on the functional part of an
appllcatlon to make sure the behavior of the software is as expected.

The tester passes input data to make sure whether the actual output

matches the expected output.

Black Box Testing Techniques:

3—/.44 U,yo{ —](9 M |wn~:}<'n,~«wfvn5«y°1[/0%%—f—bﬁ* C%’T‘D“@MM\"“
Equwalence Partltlomng (ﬁjm artlt—l-c’frﬁr %Walggc known as
Equivalence Class Partitioning. In equivalence partitioning, inputs to the
software or system are divided into groups that are expected to exhibit

similar behavior, so they are likely to be proposed in the same way. Hence

A Boimdary Value Analysis: Boundary value analysis (BVA) is based on ol
stmg the boundary values of valid and invalid partitions. The Behawor at | ;*;,;;;;_

| -fcumm e ey mimes whether o Congoi e of odiess 6
5‘1 Tl S5t O mt: § b edipeFoitcor I
: S%Mj N‘\QM-Jv\bu-f— _” wlld“«)vw CQY’fGA\'« :

i a&iu.r.«l‘

Scanned by CamScanner

&
PLER R

le: Decision Table
Priate for functi
if—e_ISe Io_glc). In

is aka Cause-Effect Table. J
onalities which has logical relatic
Decisilbn table technique, we deal

s - -
ASAB IS S oo S ST T
12’,;;9;».&-mm-.;_‘-.g,:;,.._-;s._,-

: l\duixdoh Puts Carye,
B S itects ol madyiy ~8 Omioyece Cvnbim ahioan
CAliymon

Is functional testing . 3¢ g‘A Stlatee! ho -Fm A o I tirpad= opc@}sw
A3 APy ;s B
Non-functionality Testmg:% s?ré%’lérv%r&’,”’nbw well the syste

m
performs is non-functionality testing 9143 st > spadeq o 1e¥H

ot adkesh |
q‘ym&.‘w but ngt
The following table lists the advant

s om ol TUY UK paant<
ages and disadvantages of black-box
testing.
‘Disadvantages
1 ; .i;;:.,_ N

.+ Well suited and efficient for large

« Limited coverage, since
code segments.

only a selected number

Scanned by CamScanner

application with no knowledge of < . €
_implementation, programming tester cannot target sz

- language, or operating systems. i: specific code segme“ts
or error-prone areas.

{

.

|« Thetest cases are
| _difficult to design.. jf,.

White-Box Te St|ng

White-box testing is the detailed investigation of int
of the code. White-box testing is also called glass testi
testing. In order to perform white-box testing on an application,

ernal logic and structure
ing or open-box
a tester

needs to know the internal workings of the code.
The tester needs to have a look inside the source ¢
unlt/chunk of the code is behaving inappropriately.
It is also called as Glass Box, Clear Box, Structural Testing.

ode and find out which

White Box Testing is based on applications internal code structure. In white-

box testing an -internal perspective of the system, as well as programming

skills, are used to design test cases. This testing usually done at the unit

level.

e
SRS

Scanned by CarhS“ééhner

[} the decusion directlons must be executed at least once durmg the

| —~——test|ng life cycle= =1 e : e, _‘.f:_f_“_ﬂ%
4. Data Flow Test :
This will ensure that all the variables and data that are used with in the
system are tested by passing the specific variables through each
possible calculation.
The following table lists the advantages and disadvantages of white-box
testing.

: i
.+ Asthe tester has 5 « Due to the fact that a skilled
knowledge of the source ’ tester is needed to perform
code, it becomes very ! white-box testing, the costs are
| easy to find out which increased.
| type of data can helpin =« Sometimes it is impossible to
! testing the application look into every nook and corner
effectively. : to find out hidden errors that
« It helps in optimizing the may create problems, as many
code. : paths will go untested.

It is difficult to maintain whlte- i
box testmg, as it requnres

+ Extra lines; of code can be

i A{a;.; \‘zﬂ

Scanned by CamScanner

srey-Box Testing
Grey-box testing is a technique to test the application with having a Iimi'ted |
knowledge of the internal workings of an application. In software testlngr
the phrase the more you know, the better carries a lot of weight while
testing an application. i S|

Mastering the domain of a system always gives the tester an edge OVer
someone with limited domain knowledge. Unlike black-box testing, where
the tester only tests the application’s user interface; in grey-box testing,
" the tester has access to design documents and the database. Having this
knowledge, a tester can prepare better test data and test scenarios while

making a test plan.

. Offers combined benefits of « Since the access to source
black-box and white-box [code is not available, the
testing wherever possible. “ ability to go over the code

« Grey box testers don't rely on and test coverage is
the source code; instead they limited.
rely on interface definition and o The tests can be redundant
functional specifications. if the software designer has

. Based on the limited already run a test case.
information available, a grey- =« Testing every possible input
box tester can design : stream is unrealistic ‘

“excellent test scenarios because it would take an

~ especially around unreasonable amount of

G
e

ot "rlh-w' o

THE S RRRL ¢ L

Scanned by baﬁScanne -

+

_h.|te-box testing.

W31 E) :_‘_\" 1,:‘1'_3‘5"t

| -of an application need
- | not be known.

| The internal workings

iEesting

'The tester has limited
knowledge of the
internal workings of the
application.

Aiso known as closed-
box testing, data-
driven testing, or
 functional testing.

i
i
{
l
{
i
l

Also known as
transiucent testing, as

the tester has limited
knowledge of the
insides of the

application.

- Performed by end-
users and also by
testers and
developers. ;

 Testing is based on

~ | external expectations - |
Internal behavior of
- | the application is

b
d
|

Performed by end-
~ users and also by

testers and developers.

Testing is done on the

asis of high-level
atabase diagrams and

’

| Tester has full

| knowledge of the

_internal workings of
the application.

 Also known as clear-

' box testing,
structural testing, or
code-based testing.

Normally done by
testers and
developers.

Internal workings are
fully known and the
 tester can design
' test data ‘

Scanned by CamScanner

| Partly i:ime-éonsuming
- |and exhaustive,

i R : U‘j‘: :
Not suited for algorithm | Suited for algol'ithm‘_ :
testing. testing. |

‘\ v -____. & PRSI Yok
Data domains and Data domains an.d

internal boundaries can internal boundaries
be tested, if known. can be better tested. |
b | |

R]

This can only bé done
by trial-and—error
: .method.

Verificatio,n and validation

Verification
The process of evaluating software
agiven development phase satis
phase.

to determine whether the products of
fy the conditions imposed at the start of that

Verification is a static practice of veri

th Producing high quality

Software: inspection, design analysis and Specification analysis. It

relatively objective process,

ke :
| 4 Verlﬂcation uses methods like 4. Validation uses methods h

code

| 3. It is computer, based execution oj e
program. . :

, gra
inspections, reviews, walkthroughs, g‘;’: l:etasc;:"éfug\:;lc\::\:l‘t)e E)%S)‘(:mg SR
and Desk-checking etc. (structural) testing etc.

5. Verification is to check whether |5. Validation is to check whether
the software confprms to software meets the customer
specifications. expectations and requirements.

6. It can catch errors that validation |6. It can catch errors that

cannot catch. It is low level verification cannot catch. It is High
exercise. Level Exercise.

7. Target is requirements
specification, application and .
software architecture, high level,
complete design, and database
design etc.

7. Target is actual product-a unit, a
module, a bent of integrated

modules, and effective final product.

8. Verification is done by QA team
to ensure that the software is as

8. Validation is carried out with the
per the specifications in the SRS

involvement of testing team.

document.
9. It generally comes first-done 9. It generally follows
before validation. after verification.

Q)n 4 }egﬁé\j
}erQj\{q“ e aﬁag_}@

Vel (dbikfon feiing

4

Scanned by CamScanner

